Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
J Sci Food Agric ; 104(2): 916-931, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-37705305

ABSTRACT

BACKGROUND: The apple (Malus domestica Borkh.) plays an important role in the trendy market of dried snacks because of its exceptional flavor and texture. In addition to the health benefits, there is also a general disposition to consume organic and do-it-yourself products. RESULTS: Three different drying temperatures, 65, 75, and 85 °C, were tested using a commercial ventilated drying oven in 'Royal Gala' and 'Golden Delicious' cultivars. Physical changes, including texture, color, shrinkage ratio, and microstructure, were evaluated for the temperatures and cultivars considered. Based on the results, particularly in terms of shrinkage, hardness, and crispiness, a drying temperature of 75 °C was selected to perform texture profile analyses throughout the drying period. Storability conditions were evaluated to determine the best moment to maintain the physical properties of the dried snacks during storage. Considered the more important property related to consumer preferences, crispiness was followed with puncture tests. CONCLUSION: The storage of apple chips, dried at the various temperatures, that must be performed in 5-10 min after removing from the drying oven, was assessed over the course of a month. Both the drying process and the subsequent storage proved effective in preserving the desired texture of the apple snacks, regardless of the specific cultivar or drying temperature used. Through this study, with a refined understanding of the changes occurring during the drying process and the optimization of storage conditions, we can confidently offer consumers the best combination of crispy and healthy snacks that meet their expectations. © 2023 Society of Chemical Industry.


Subject(s)
Malus , Malus/chemistry , Temperature , Snacks , Desiccation/methods
2.
Article in English | MEDLINE | ID: mdl-36767852

ABSTRACT

The large production of wine and almonds leads to the generation of sub-products, such as winery wastewater (WW) and almond skin. WW is characterized by its high content of recalcitrant organic matter (biodegradability index < 0.30). Therefore, the aim of this work was to (1) apply the coagulation-flocculation-decantation (CFD) process with an organic coagulant based on almond skin extract (ASE), (2) treat the organic recalcitrant matter through sulfate radical advanced oxidation processes (SR-AOPs) and (3) evaluate the efficiency of combined CFD with UV-A, UV-C and ultrasound (US) reactors. The CFD process was applied with variation in the ASE concentration vs. pH, with results showing a chemical oxygen demand (COD) removal of 61.2% (0.5 g/L ASE, pH = 3.0). After CFD, the germination index (GI) of cucumber and corn seeds was ≥80%; thus, the sludge can be recycled as fertilizer. The SR-AOP initial conditions were achieved by the application of a Box-Behnken response surface methodology, which described the relationship between three independent variables (peroxymonosulfate (PMS) concentration, cobalt (Co2+) concentration and UV-A radiation intensity). Afterwards, the SR-AOPs were optimized by varying the pH, temperature, catalyst type and reagent addition manner. With the application of CFD as a pre-treatment followed by SR-AOP under optimal conditions (pH = 6.0, [PMS] = 5.88 mM, [Co2+] = 5 mM, T = 343 K, reaction time 240 min), the COD removal increased to 85.9, 82.6 and 80.2%, respectively, for UV-A, UV-C and US reactors. All treated wastewater met the Portuguese legislation for discharge in a municipal sewage network (COD ≤ 1000 mg O2/L). As a final remark, the combination of CFD with SR-AOPs is a sustainable, safe and clean strategy for WW treatment and subproduct valorization.


Subject(s)
Prunus dulcis , Water Pollutants, Chemical , Wastewater , Waste Disposal, Fluid/methods , Water Pollutants, Chemical/analysis , Oxidation-Reduction , Sewage , Hydrogen Peroxide/chemistry
3.
Materials (Basel) ; 17(1)2023 Dec 30.
Article in English | MEDLINE | ID: mdl-38204063

ABSTRACT

In this work, we investigated the MOCVD conditions to synthesize thin films with the hexagonal P63cm h-LuMnO3 phase as a potential low-band gap ferroelectric material. The main parameters investigated were the ratio of organometallic starting materials, substrate temperature, and annealing effect. Two different substrates were used in the study: fused silica (SiO2) glass and platinized silicon (Pt\Ti\SiO2\Si(100)). In order to investigate the thermodynamic stability and quality of the developed phases, a detailed analysis of the crystal structure, microstructure, morphology, and roughness of the films was performed by X-ray diffractometer, scanning electron microscopy (SEM), energy dispersive spectrometry (EDS), Raman spectroscopy, and piezoelectric force microscopy (PFM). Molar compositions in the film within 0.93 < |Lu|/|Mn| < 1.33 were found to be suitable for obtaining a single-phase h-LuMnO3. The best films were obtained by depositions at 700 °C, followed by thermal treatments at 800 °C for long periods of up to 12 h. These films exhibited a highly crystalline hexagonal single phase with a relatively narrow direct band gap, around 1.5 eV, which is within the expected values for the h-LuMnO3 system.

4.
Insects ; 13(6)2022 Jun 10.
Article in English | MEDLINE | ID: mdl-35735874

ABSTRACT

Vespa velutina accidentally arrived in Europe (France) in 2004, and rapidly expanded throughout the entire country. Its presence in mainland Portugal was first noticed in 2011. Being an invasive species with no natural predators in the region to control it, it has caused enormous environmental and economic damage, particularly on Apis mellifera (honeybee) colonies. Although there is already some research on this species' biology, little is known about its adaption to European ecological conditions, specifically in terms of nest building. This type of hornet builds a primary nest in the spring to start a colony. During the summer, they build a secondary nest to develop the main colony. These secondary nests are ovoid-shaped and range in size from 18.7 cm to 45.0 cm in diameter and from 19.2 cm to 65.0 cm in length, attaining their highest development in late summer. The external appearance of these nests is characterized by alternating stripes that are beige and brown in color. The main objective of this study is to identify the composition and the origin of the materials that are used by Vespa velutina nigrithorax to build the outer envelope of these secondary nests. This information could be very interesting and will not only increase our knowledge on the biology of the species in regions far from its original area, but will also be relevant for the future implementation of new policies to control this invasive species by means biological control. Several samples were taken from each nest and were observed under different optical magnifying devices. In the second stage, their chemical composition was analyzed by X-ray diffraction (XRD) and scanning electron microscopy (SEM/EDS). It was noticed that almost all of the materials used in the nests' construction were lignocellulose from woody materials from both softwood (gymnosperm) and hardwood (angiosperm) forest species as well from leaves and small particles of agricultural origin (grasses). The beige strips were formed almost exclusively from woody softwood cells, while the brown strips were composed of hardwood cells, leaf tissues, and grasses. Chemically, it was noticed that this material mainly consisted of cellulose, with more than 99% being composed of C and O and very little mineral material from elements such as Na, Al, Si, K, and Ca. The achieved results allow us to state that in the construction of these secondary nests, these hornets only used organic materials that are then probably agglomerated through their mouths.

5.
Biochim Biophys Acta Gene Regul Mech ; 1860(7): 773-781, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28457997

ABSTRACT

Saccharomyces cerevisiae GimC (mammalian Prefoldin) is a hexameric (Gim1-6) cytoplasmic complex involved in the folding pathway of actin/tubulin. In contrast to a shared role in GimC complex, we show that absence of individual Gim proteins results in distinct stress responses. No concomitant alteration in F-actin integrity was observed. Transcription of stress responsive genes is altered in gim2Δ, gim3Δ and gim6Δ mutants: TRX2 gene is induced in these mutants but with a profile diverging from type cells, whereas CTT1 and HSP26 fail to be induced. Remaining gimΔ mutants display stress transcript abundance comparable to wild type cells. No alteration in the nuclear localization of the transcriptional activators for TRX2 (Yap1) and CTT1/HSP26 (Msn2) was observed in gim2Δ. In accordance with TRX2 induction, RNA polymerase II occupancy at TRX2 discriminates the wild type from gim2Δ and gim6Δ. In contrast, RNA polymerase II occupancy at CTT1 is similar in wild type and gim2Δ, but higher in gim6Δ. The absence of active RNA polymerase II at CTT1 in gim2Δ, but not in wild type and gim1Δ, explains the respective CTT1 transcript outputs. Altogether our results put forward the need of Gim2, Gim3 and Gim6 in oxidative and osmotic stress activated transcription; others Gim proteins are dispensable. Consequently, the participation of Gim proteins in activated-transcription is independent from the GimC complex.


Subject(s)
Osmotic Pressure/physiology , Oxidative Stress/genetics , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Transcription, Genetic/genetics , Actins/metabolism , DNA-Binding Proteins/metabolism , Gene Expression Regulation, Fungal/genetics , Molecular Chaperones/metabolism , RNA Polymerase II/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Transcription Factors/metabolism , Tubulin/metabolism
6.
Colloids Surf B Biointerfaces ; 123: 916-23, 2014 Nov 01.
Article in English | MEDLINE | ID: mdl-25466464

ABSTRACT

The present work aimed at studying the interaction between insulin and SiNP surfaced with mucoadhesive polymers (chitosan, sodium alginate or polyethylene glycol) and the evaluation of their biocompatibility with HepG2 and Caco-2 cell lines, which mimic in vivo the target of insulin-loaded nanoparticles upon oral administration. Thus, a systematic physicochemical study of the surface-modified insulin-silica nanoparticles (Ins-SiNP) using mucoadhesive polymers has been described. The surfacing of nanoparticle involved the coating of silica nanoparticles (SiNP) with different mucoadhesive polymers, to achieve high contact between the systems and the gut mucosa to enhance the oral insulin bioavailability. SiNP were prepared by a modified Stöber method at room temperature via hydrolysis and condensation of tetraethyl orthosilicate (TEOS). Interaction between insulin and nanoparticles was assessed by differential scanning calorimetry (DSC), X-ray and Fourier-transform infrared (FTIR) studies. The high efficiency of nanoparticles' coating resulted in more stable system. FTIR spectra of insulin-loaded nanoparticles showed amide absorption bands which are characteristic of α-helix content. In general, all developed nanoparticles demonstrated high biocompatible, at the tested concentrations (50-500 µg/mL), revealing no or low toxicity in the two human cancer cell lines (HepG2 and Caco-2). In conclusion, the developed insulin-loaded SiNP surfaced with mucoadhesive polymers demonstrated its added value for oral administration of proteins.


Subject(s)
Drug Carriers/chemistry , Insulin/administration & dosage , Insulin/chemistry , Nanoparticles/chemistry , Polymers/chemistry , Silicon Dioxide/chemistry , Administration, Oral , Alginates/chemistry , Caco-2 Cells , Cell Survival/drug effects , Chitosan/chemistry , Drug Carriers/adverse effects , Glucuronic Acid/chemistry , Hep G2 Cells , Hexuronic Acids/chemistry , Humans , Nanoparticles/adverse effects , Polyethylene Glycols/chemistry , Polymers/adverse effects
7.
Colloids Surf B Biointerfaces ; 123: 452-60, 2014 Nov 01.
Article in English | MEDLINE | ID: mdl-25303852

ABSTRACT

The encapsulation of epigallocatechin gallate (EGCG) in lipid nanoparticles (LNs) could be a suitable approach to avoid drug oxidation and epimerization, which are common processes that lead to low bioavailability of the drug limiting its therapeutic efficacy. The human health benefits of EGCG gained much interest in the pharmaceutical field, and so far there are no studies reporting its encapsulation in LNs. The purpose of this study has been the development of an innovative system for the ocular delivery of EGCG using LNs as carrier for the future treatment of several diseases, such as dry eye, age-related macular degeneration (AMD), glaucoma, diabetic retinopathy and macular oedema. LNs dispersions have been produced by multiple emulsion technique and previously optimized by a factorial design. In order to increase ocular retention time and mucoadhesion by electrostatic attraction, two distinct cationic lipids were used, namely, cetyltrimethylammonium bromide (CTAB) and dimethyldioctadecylammonium bromide (DDAB). EGCG has been successfully loaded in the LNs dispersions and the nanoparticles analysis over 30 days of storage time predicted a good physicochemical stability. The particles were found to be in the nanometer range (<300 nm) and all the evaluated parameters, namely pH, osmolarity and viscosity, were compatible to the ocular administration. The evaluation of the cationic lipid used was compared regarding physical and chemical parameters, lipid crystallization and polymorphism, and stability of dispersion during storage. The results show that different lipids lead to different characteristics mainly associated with the acyl chain composition, i.e. double lipid shows to have influence in the crystallization and stability. Despite the recorded differences between DTAB and DDAB, both cationic LNs seem to fit the parameters for ocular drug delivery.


Subject(s)
Catechin/analogs & derivatives , Lipids/chemistry , Nanoparticles/chemistry , Administration, Ophthalmic , Catechin/chemistry , Cetrimonium , Cetrimonium Compounds/chemistry , Drug Carriers/chemistry , Humans , Quaternary Ammonium Compounds/chemistry
8.
Rep Pract Oncol Radiother ; 19(6): 392-8, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25337412

ABSTRACT

AIM: To use Monte Carlo (MC) together with voxel phantoms to analyze the tissue heterogeneity effect in the dose distributions and equivalent uniform dose (EUD) for (125)I prostate implants. BACKGROUND: Dose distribution calculations in low dose-rate brachytherapy are based on the dose deposition around a single source in a water phantom. This formalism does not take into account tissue heterogeneities, interseed attenuation, or finite patient dimensions effects. Tissue composition is especially important due to the photoelectric effect. MATERIALS AND METHODS: The computed tomographies (CT) of two patients with prostate cancer were used to create voxel phantoms for the MC simulations. An elemental composition and density were assigned to each structure. Densities of the prostate, vesicles, rectum and bladder were determined through the CT electronic densities of 100 patients. The same simulations were performed considering the same phantom as pure water. Results were compared via dose-volume histograms and EUD for the prostate and rectum. RESULTS: The mean absorbed doses presented deviations of 3.3-4.0% for the prostate and of 2.3-4.9% for the rectum, when comparing calculations in water with calculations in the heterogeneous phantom. In the calculations in water, the prostate D 90 was overestimated by 2.8-3.9% and the rectum D 0.1cc resulted in dose differences of 6-8%. The EUD resulted in an overestimation of 3.5-3.7% for the prostate and of 7.7-8.3% for the rectum. CONCLUSIONS: The deposited dose was consistently overestimated for the simulation in water. In order to increase the accuracy in the determination of dose distributions, especially around the rectum, the introduction of the model-based algorithms is recommended.

9.
Phys Med ; 30(7): 799-808, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25239870

ABSTRACT

The MCNPX code was used to calculate the TG-43U1 recommended parameters in water and prostate tissue in order to quantify the dosimetric impact in 30 patients treated with (125)I prostate implants when replacing the TG-43U1 formalism parameters calculated in water by a prostate-like medium in the planning system (PS) and to evaluate the uncertainties associated with Monte Carlo (MC) calculations. The prostate density was obtained from the CT of 100 patients with prostate cancer. The deviations between our results for water and the TG-43U1 consensus dataset values were -2.6% for prostate V100, -13.0% for V150, and -5.8% for D90; -2.0% for rectum V100, and -5.1% for D0.1; -5.0% for urethra D10, and -5.1% for D30. The same differences between our water and prostate results were all under 0.3%. Uncertainties estimations were up to 2.9% for the gL(r) function, 13.4% for the F(r,θ) function and 7.0% for Λ, mainly due to seed geometry uncertainties. Uncertainties in extracting the TG-43U1 parameters in the MC simulations as well as in the literature comparison are of the same order of magnitude as the differences between dose distributions computed for water and prostate-like medium. The selection of the parameters for the PS should be done carefully, as it may considerably affect the dose distributions. The seeds internal geometry uncertainties are a major limiting factor in the MC parameters deduction.


Subject(s)
Brachytherapy/methods , Prostatic Neoplasms/pathology , Prostatic Neoplasms/radiotherapy , Prostheses and Implants , Humans , Iodine Radioisotopes/therapeutic use , Male , Monte Carlo Method , Organs at Risk/radiation effects , Radiometry , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted , Rectum/radiation effects , Uncertainty , Urethra/radiation effects
10.
Pharm Dev Technol ; 19(8): 922-9, 2014 Dec.
Article in English | MEDLINE | ID: mdl-24099511

ABSTRACT

OBJECTIVE: To prepare stable and easy to handle formulation of solid lipid nanoparticles (SLNs) by freeze-drying with or without cryoprotectants, as appropriate. MATERIALS AND METHODS: SLNs were freeze-dried without cryoprotectants or with cryoprotectants in quantities selected by freeze-thaw test (sucrose, glucose) or literature search (trehalose, maltose). Appearance, re-dispersability and size distribution of re-dispersed samples were evaluated. RESULTS: SLN could be freeze-dried using 10% sucrose, trehalose or maltose. Trehalose was effective in protecting one of presented formulations that was already very stable on its own; its efficiency in protecting other two formulations was limited. DISCUSSION: Our results are in line with various reports of successful freeze-drying of SLN, but considering the stability of original dispersions, no improvement was achieved. CONCLUSION: We confirmed that trehalose is among the most suitable cryoprotectant for SLN, however it did not improve shelf-life of the most stable formulation.


Subject(s)
Cryoprotective Agents/chemistry , Freeze Drying/methods , Lipids/chemistry , Nanoparticles/chemistry , Trehalose/chemistry , Maltose/chemistry , Nanoparticles/ultrastructure , Particle Size , Solubility , Sucrose/chemistry
11.
Plant Mol Biol ; 82(4-5): 439-55, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23703395

ABSTRACT

High salinity causes remarkable losses in rice productivity worldwide mainly because it inhibits growth and reduces grain yield. To cope with environmental changes, plants evolved several adaptive mechanisms, which involve the regulation of many stress-responsive genes. Among these, we have chosen OsRMC to study its transcriptional regulation in rice seedlings subjected to high salinity. Its transcription was highly induced by salt treatment and showed a stress-dose-dependent pattern. OsRMC encodes a receptor-like kinase described as a negative regulator of salt stress responses in rice. To investigate how OsRMC is regulated in response to high salinity, a salt-induced rice cDNA expression library was constructed and subsequently screened using the yeast one-hybrid system and the OsRMC promoter as bait. Thereby, two transcription factors (TFs), OsEREBP1 and OsEREBP2, belonging to the AP2/ERF family were identified. Both TFs were shown to bind to the same GCC-like DNA motif in OsRMC promoter and to negatively regulate its gene expression. The identified TFs were characterized regarding their gene expression under different abiotic stress conditions. This study revealed that OsEREBP1 transcript level is not significantly affected by salt, ABA or severe cold (5 °C) and is only slightly regulated by drought and moderate cold. On the other hand, the OsEREBP2 transcript level increased after cold, ABA, drought and high salinity treatments, indicating that OsEREBP2 may play a central role mediating the response to different abiotic stresses. Gene expression analysis in rice varieties with contrasting salt tolerance further suggests that OsEREBP2 is involved in salt stress response in rice.


Subject(s)
Oryza/metabolism , Transcription Factor AP-2/metabolism , Abscisic Acid/pharmacology , Droughts , Gene Expression Regulation, Plant/drug effects , Gene Expression Regulation, Plant/genetics , Oryza/drug effects , Oryza/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Sodium Chloride/pharmacology , Transcription Factor AP-2/genetics
12.
Nanoscale Res Lett ; 6(1): 435, 2011 Jun 22.
Article in English | MEDLINE | ID: mdl-21711499

ABSTRACT

Au was loaded (1 wt%) on a commercial MgO support by three different methods: double impregnation, liquid-phase reductive deposition and ultrasonication. Samples were characterised by adsorption of N2 at -96°C, temperature-programmed reduction, high-resolution transmission electron microscopy, energy-dispersive X-ray spectroscopy and X-ray diffraction. Upon loading with Au, MgO changed into Mg(OH)2 (the hydroxide was most likely formed by reaction with water, in which the gold precursor was dissolved). The size range for gold nanoparticles was 2-12 nm for the DIM method and 3-15 nm for LPRD and US. The average size of gold particles was 5.4 nm for DIM and larger than 6.5 for the other methods. CO oxidation was used as a test reaction to compare the catalytic activity. The best results were obtained with the DIM method, followed by LPRD and US. This can be explained in terms of the nanoparticle size, well known to determine the catalytic activity of gold catalysts.

13.
Science ; 317(5839): 813-5, 2007 Aug 10.
Article in English | MEDLINE | ID: mdl-17690297

ABSTRACT

Evolution by natural selection is driven by the continuous generation of adaptive mutations. We measured the genomic mutation rate that generates beneficial mutations and their effects on fitness in Escherichia coli under conditions in which the effect of competition between lineages carrying different beneficial mutations is minimized. We found a rate on the order of 10(-5) per genome per generation, which is 1000 times as high as previous estimates, and a mean selective advantage of 1%. Such a high rate of adaptive evolution has implications for the evolution of antibiotic resistance and pathogenicity.


Subject(s)
Adaptation, Biological , Biological Evolution , Escherichia coli/genetics , Genome, Bacterial , Mutation , Selection, Genetic , Escherichia coli/physiology , Microsatellite Repeats
14.
Free Radic Biol Med ; 41(11): 1684-93, 2006 Dec 01.
Article in English | MEDLINE | ID: mdl-17145557

ABSTRACT

The general transcription factor TFIIB, encoded by SUA7 in Saccharomyces cerevisiae, is required for transcription activation but apparently of a specific subset of genes, for example, linked with mitochondrial activity and hence with oxidative environments. Therefore, studying SUA7/TFIIB as a potential target of oxidative stress is fundamental. We found that controlled SUA7 expression under oxidative conditions occurs at transcriptional and mRNA stability levels. Both regulatory events are associated with the transcription activator Yap1 in distinct ways: Yap1 affects SUA7 transcription up regulation in exponentially growing cells facing oxidative signals; the absence of this activator per se contributes to increase SUA7 mRNA stability. However, unlike SUA7 mRNA, TFIIB abundance is not altered on oxidative signals. The biological impact of this preferential regulation of SUA7 mRNA pool is revealed by the partial suppression of cellular oxidative sensitivity by SUA7 overexpression, and supported by the insights on the existence of a novel RNA-binding factor, acting as an oxidative sensor, which regulates mRNA stability. Taken together the results point out a primarily cellular commitment to guarantee SUA7 mRNA levels under oxidative environments.


Subject(s)
Oxidative Stress , RNA Stability , Saccharomyces cerevisiae Proteins/genetics , Transcription Factor TFIIB/genetics , Animals , Blotting, Northern , Blotting, Western , Hydrogen Peroxide/pharmacology , Mutation , Oxidants/pharmacology , Oxidation-Reduction , Plasmids , Polymerase Chain Reaction , RNA, Messenger , Saccharomyces cerevisiae , Saccharomyces cerevisiae Proteins/metabolism , Transcription Factor TFIIB/metabolism , Transcription, Genetic
15.
Free Radic Biol Med ; 34(3): 385-93, 2003 Feb 01.
Article in English | MEDLINE | ID: mdl-12543254

ABSTRACT

Gene expression of three antioxidant enzymes, Mn superoxide dismutase (MnSOD), Cu,Zn superoxide dismutase (Cu,ZnSOD), and glutathione reductase (GR) was investigated in stationary phase Saccharomyces cerevisiae during menadione-induced oxidative stress. Both GR and Cu,ZnSOD mRNA steady state levels increased, reaching a plateau at about 90 min exposure to menadione. GR mRNA induction was higher than that of Cu,ZnSOD (about 14-fold and 9-fold after 90 min, respectively). A different pattern of response was obtained for MnSOD mRNA, with a peak at about 15 min (about 8-fold higher) followed by a decrease to a plateau approximately 4-fold higher than the control value. However, these increased mRNA levels did not result in increased protein levels and activities of these enzymes. Furthermore, exposure to menadione decreased MnSOD activity to half its value, indicating that the enzyme is partially inactivated due to oxidative damage. Cu,ZnSOD protein levels were increased 2-fold, but MnSOD protein levels were unchanged after exposure to menadione in the presence of the proteolysis inhibitor phenylmethylsulfonyl fluoride. These results indicate that the rates of Cu,ZnSOD synthesis and proteolysis are increased, while the rates of MnSOD synthesis and proteolysis are unchanged by exposure to menadione. Also, the translational efficiency for both enzymes is probably decreased, since increases in protein levels when proteolysis is inhibited do not reflect the increases in mRNA levels. Our results indicate that oxidative stress modifies MnSOD, Cu,ZnSOD, and GR gene expression in a complex way, not only at the transcription level but also at the post-transcriptional, translational, and post-translational levels.


Subject(s)
Antioxidants/metabolism , Cell Cycle/genetics , Gene Expression Regulation, Enzymologic , Gene Expression Regulation, Fungal , Saccharomyces cerevisiae/cytology , Saccharomyces cerevisiae/enzymology , Blotting, Western , Glutathione Reductase/biosynthesis , Glutathione Reductase/genetics , Glutathione Reductase/metabolism , Oxidative Stress/drug effects , RNA, Messenger/genetics , RNA, Messenger/metabolism , Saccharomyces cerevisiae/drug effects , Saccharomyces cerevisiae/genetics , Superoxide Dismutase/biosynthesis , Superoxide Dismutase/genetics , Superoxide Dismutase/metabolism , Vitamin K 3/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...